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Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with elec-
tron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be
reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known
methods for constructing PHOX derivatives.
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Phosphinooxazoline (PHOX) ligands have found broad applica-
tions in transition metal catalysis.1 Developed by Pfaltz,2 Helm-
chen,3 and Williams,4 PHOX ligands have become a preeminent
class of P,N-ligands,5 with t-BuPHOX (L1, Scheme 1) representing
a most prominent example.6 We have recently demonstrated the
utility of t-BuPHOX in palladium-catalyzed enantioselective
decarboxylative alkylation7 and protonation8 reactions. We, how-
ever, became aware of examples where t-BuPHOX provided only
moderate results with respect to yields and enantioselectivities,
and designed an electronically-modified version of this ligand, p-
(CF3)3-t-BuPHOX (L2). In some cases, the electron-withdrawing tri-
fluoromethyl groups affected the reactivity of the corresponding
transition metal complex, leading to significantly shorter reaction
times and enhanced selectivities. For example, we were able to
achieve 99% yield and 87% ee in our palladium-catalyzed, enantio-
selective allylic alkylation reaction of allyl enol carbonate 1 within
only 10 min at 25 �C with the use of (S)-L2, while the use of (S)-L1
required 120 min reaction time to give 96% yield and 88% ee.9 Fur-
ther, this ligand was successfully applied in the catalytic asymmet-
ric total synthesis of (+)-elatol where the key allylic alkylation of
chloroallyl enol carbonate 2 was performed with (R)-L2, resulting
in 82% yield of product in 87% ee, compared to only �81% ee and
a poor 23% yield with the use of (S)-L1.10 Moreover, we recently
published a palladium-catalyzed, enantioselective enolate alkyl-
ation cascade, which provides products with up to 99% enantio-
meric excess,11 where (S)-p-(CF3)3-t-BuPHOX was far superior to
(S)-t-BuPHOX for the alkylation of b-keto ester 3.

Previously, we published a convenient and scalable synthesis
for t-BuPHOX,12 using an Ullmann-type coupling developed by
Buchwald.13 While this approach proved useful for the coupling
of aryl halides and secondary phosphines, most substituted
ll rights reserved.
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secondary phosphines are not commercially available. Similarly,
substituted secondary phosphines (e.g., bis(4-(trifluoromethyl)
phenyl)phosphine) are difficult to prepare in the required purity
due to their propensity to oxidize upon exposure to air.14 Although
the preparation of synthetically challenging PHOX variants was
possible using our previously described conditions, a more efficient
and higher yielding protocol was desired. Therefore a synthetic
strategy for the synthesis of p-(CF3)3-t-BuPHOX (L2) that avoids
phosphine intermediates was needed. We envisioned a preparative
route toward this electron-deficient PHOX ligand in which an oxaz-
oline-containing aryl bromide is joined directly with a secondary
phosphine oxide.15,16 Herein, we demonstrate a copper-catalyzed
coupling of aryl halides to secondary phosphine oxides for the syn-
thesis of electron-deficient PHOX ligands.

Oxazoline-containing aryl bromide 4 and secondary phosphine
oxide 5 can be readily synthesized on multi-gram scale (Scheme 2).
Aryl bromide 4 was prepared using modified conditions from a
published route,10 requiring only one purification by flash chroma-
tography. The treatment of (S)-t-leucinol with acid chloride 67 in
the presence of sodium carbonate provided amide 7 in 93% yield.17

Subsequent mesylation of the free hydroxyl of 7, followed by
in situ mesylate displacement results in the formation of oxazoline
4 in 99% yield.18 Bis(4-(trifluoromethyl)phenyl)phosphine oxide
519 is produced in 80% yield by careful exposure of 4-(trifluoro-
methyl)phenylmagnesium bromide 8, synthesized via the Leazer
method,20 to diethyl phosphite.21 Unlike the related secondary
phosphine, phosphine oxide 5 can be purified by column chroma-
tography and is stable to air at room temperature for several
months.

Our modification to Buchwald’s copper iodide-catalyzed condi-
tions for the coupling of secondary phosphines with aryl bro-
mides9,12 was tested for the coupling of secondary phosphine
oxide 5 with oxazolinyl aryl bromide 4 (Table 1, entries 1 and 2).
Gratifyingly, when a catalytic amount of CuI (12.5 mol %) was used
in combination with N,N0-dimethylethylenediamine as ligand and
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Scheme 1. PHOX ligands and their use in synthesis and methodology development.

N. T. McDougal et al. / Tetrahedron Letters 51 (2010) 5550–5554 5551
Cs2CO3 as base, secondary phosphine oxide 5 could be successfully
coupled with aryl bromide 4 to produce 9 in 57% yield (entry 1).
Reaction times could be reduced, and product yields improved to
65% with the use of a stoichiometric amount of CuI at a higher reac-
tion concentration (entry 2).22 To our satisfaction, secondary phos-
phine oxide 5 could be coupled with other aryl bromides 10–12 in
moderate to good yields using catalytic amounts of CuI (entries 3–
5). Similarly, bis(3,5-bis(trifluoromethyl)phenyl)phosphine oxide
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Scheme 2. Synthesis of oxazoline-containing aryl
(13) could be coupled with oxazoline-containing aryl bromides
using catalytic loadings of CuI (entries 6 and 7).

The resulting triarylphosphine oxides 9 and 14–18 can be
smoothly purified by column chromatography and reduced to the
corresponding PHOX ligands via silane reduction.23 For example,
reduction of 9 to the desired p-(CF3)3-t-BuPHOX ligand was accom-
plished with neat diphenylsilane, yielding L2 in 86% isolated yield
(Scheme 3).24
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Table 1
Copper-catalyzed coupling of aryl bromides with secondary phosphine oxidesa

H3CHN
NHCH3CuI,

                Cs2CO3

           PhCH3, 110°C
+

P N

O

R2Ar

Ar O R3

R3

R1

P

Ar

Ar O

H

Br N

O

R2

R3

R3

R1

Entry Aryl bromide Secondary phosphine oxide Product Yieldb (%)

1

Br

CF3

N

O

t-Bu
4

H

PF3C

CF3

O

5

P

CF3

N

O

t-Bu

F3C

CF3

O

9

57

2c 65

3 Br N

O

t-Bu

Ph

Ph

10

H

PF3C

CF3

O

5

P N

O

t-Bu

F3C

CF3

O Ph

Ph

14

85

4 Br N

O

i-Pr

Ph

Ph

11

H

PF3C

CF3

O

5

P N

O

i-Pr

F3C

CF3

O Ph

Ph

15

62

5 Br N

O

i-Pr

Ph

Ph

CF3

12

H

PF3C

CF3

O

5

P N

O

i-Pr

F3C

CF3

O Ph

Ph

CF3

61

55

6 Br N

O

t-Bu

Ph

Ph

10

H

P O

F3C

F3C

F3C CF3

31

P N

O

t-Bu

O Ph

Ph

F3C

F3C

F3C CF3 71

46

7
Br N

O

i-Pr

Ph

Ph

CF3

12

H

P O

F3C

F3C

F3C CF3

31

P N

O

i-Pr

O Ph

Ph

CF3

F3C

F3C

F3C CF3 81

36

a Reactions were performed with aryl bromide (1.0 equiv), secondary phosphine oxide (1.3 equiv), CuI (12.5 mol %), N,N0-dimethylethylenediamine (87.5% mol %), and
Cs2CO3 (3.7 equiv) in PhCH3 (0.1 m) at 110 �C for 38–42 h.

b Yield of isolated product.
c Reaction was performed with 1.0 equiv of CuI and 3.0 equiv of N,N0-dimethylethylenediamine in PhCH3 (0.25 M) for 15 h.
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In conclusion, we have developed a rapid synthesis of p-(CF3)3-
t-BuPHOX (L2) that results in an overall 51% yield starting from (S)-
t-leucine under relatively mild conditions in four linear steps. The
route utilizes a copper iodide-catalyzed coupling of oxazoline-con-
taining aryl bromide 4 to secondary phosphine oxide 5, followed
by a silane-mediated reduction of the resulting triarylphosphine
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Scheme 3. Reduction of 9 to afford (S)-p-(CF3)3-t-BuPHOX.
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oxide, to prepare the phosphinooxazoline core structure. We be-
lieve that the copper-catalyzed coupling of aryl bromides to sec-
ondary phosphine oxides provides a convenient alternative to the
coupling of air-sensitive secondary phosphines for the preparation
of tertiary phosphines.
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